SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Eriksson Jacob Dr 1985 ) ;pers:(Hellesen C);pers:(Bourdelle C)"

Search: WFRF:(Eriksson Jacob Dr 1985 ) > Hellesen C > Bourdelle C

  • Result 1-8 of 8
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  •  
3.
  • Bourdelle, C., et al. (author)
  • Fast H isotope and impurity mixing in ion-temperature-gradient turbulence
  • 2018
  • In: Nuclear Fusion. - : IOP PUBLISHING LTD. - 0029-5515 .- 1741-4326. ; 58:7
  • Journal article (peer-reviewed)abstract
    • In ion-temperature-gradient (ITG) driven turbulence, the resonance condition leads to ion particle turbulent transport coefficients significantly larger than electron particle turbulent transport coefficients. This is shown in nonlinear gyrokinetic simulations and explained by an analytical quasilinear model. It is then illustrated by JETTO-QuaLiKiz integrated modelling. Large ion particle transport coefficients implies that the ion density profiles are uncorrelated to the corresponding ion source, allowing peaked isotope density profiles even in the absence of core source. This also implies no strong core accumulation of He ash. Furthermore, the relaxation time of the individual ion profiles in a multi-species plasma can be significantly faster than the total density profile relaxation time which is constrained by the electrons. This leads to fast isotope mixing and fast impurity transport in FM regimes. In trapped-electron- mode (TEM) turbulence, in presence of electron heating about twice the ion heating, the situation is the inverse: ion particle turbulent transport coefficients are smaller than their electron counterpart.
  •  
4.
  •  
5.
  •  
6.
  •  
7.
  •  
8.
  • Breton, S., et al. (author)
  • First principle integrated modeling of multi-channel transport including Tungsten in JET
  • 2018
  • In: Nuclear Fusion. - : IOP PUBLISHING LTD. - 0029-5515 .- 1741-4326. ; 58:9
  • Journal article (peer-reviewed)abstract
    • For the first time, over five confinement times, the self-consistent flux driven time evolution of heat, momentum transport and particle fluxes of electrons and multiple ions including Tungsten (W) is modeled within the integrated modeling platform JFTTO (Romanelli et al 2014 Plasma Fusion Res. 9 1-4), using first principle-based codes: namely, QuaLiKiz (Bourdelle et al 2016 Plasma Phys. Control. Fusion 58 014036) for turbulent transport and NEO (Belli and Candy 2008 Plasma Phys. Control. Fusion 50 95010) for neoclassical transport. For a JET-ILW pulse, the evolution of measured temperatures, rotation and density profiles are successfully predicted and the observed W central core accumulation is obtained. The poloidal asymmetries of the W density modifying its neoclassical and turbulent transport are accounted for. Actuators of the W core accumulation are studied: removing the central particle source annihilates the central W accumulation whereas the suppression of the torque reduces significantly the W central accumulation. Finally, the presence of W slightly reduces main ion heat turbulent transport through complex nonlinear interplays involving radiation, effective charge impact on ITG and collisionality.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-8 of 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view